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Apatite-wollastonite glass-ceramics
Part | Crystallization kinetics by differential thermal analysis
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Apatite crystallization in the apatite-wollastonite glass exhibits a three-dimensional

bulk mechanism with an Avrami parameter (n) ~ 3, while that of the second phase
(wollastonite) shows a two-dimensional surface mechanism (planar growth) with

n~ 2. A strong effect of glass particle size on the wollastonite crystallization temperature is
observed. The peak temperature is lower when the particle size is smaller.
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1. Introduction Glasses were crushed and sieved through a series
Bioactive apatite—wollastonite (A—W) glass-ceramicsof screens. Particle sizes in the range of 1-2 mm to
exhibit high fracture toughness and strength, which al<45u,m were prepared. They were stored in an oven
lowthemto be used as load-bearing implants [1, 2]. Formaintained at~120°C until used for the differen-
mation of a wollastonite phase upon appropriate hedtial thermal analysis (DTA) measurements. Runs were
treatment is responsible for the substantial increase imade on 9@ 0.1 mg samples in a platinum crucible.
mechanical properties [2, 3]. However, crystallizationThe accuracy of the instrument was verified using sil-
of the wollastonite phase creates defects, such as poresgr standards. Particles with sizes of 1-2 mm (coarse)
cracks, etc., and, in the worst case, even breaks a bulind 180-25@m (fine) were used for the crystallization
sample. Such behaviour limits the bulk-glass formingkinetic studies. The measurements were performed at
method for this composite material. Recently, this mate-a heating rate of 5, 7, 10, and 15 K mtnin a flowing

rial has been manufactured by ceramic powder processitrogen atmosphere. The data were analysed using the
ing technique, i.e. pulverizing the glass, compacting theéissinger equation [6]

glass powders, and ceramming to form a glass-ceramic

[4, 5].

Details on crystallization kinetics of this glass system In <%> = —% +C (1)

have not been published. The crystallization kinetic pa- T P

rameters found by differential thermal analysis (DTA)

indicate that crystallization of the apatite phase is avheres is the heating rateR is the gas constantp is

three-dimensional bulk process and that of the wollasthe crystallization peak temperatuteis the activation

tonite phase is a two-dimensional p|anar growth, surenergy for Crystallization, and is a constant. The acti-

face process. The DTA studies show the strong effecyation energy was determined from a plot ofi{Ts)

of glass particle size on the crystallization temperaturé/ersus 1000Tp.

of the wollastonite phase. The Avrami parameten, can be calculated from a
single exotherm using the equation presented by Augis
and Bennett [7]

2. Experimental procedure

Glasses were prepared from reagent grade GaCO 25RTZ

Si0,, MgO, CaHPQ-2H,0, and Cak. Composition N= EWAME )

of glasses melted here was based on information from

Nakamura[1], providedin Table I. Batches were meltedThe Avrami parameter can be used to indicate shape

in covered platinum-10% rhodium crucibles fbhin  and dimensionality of the crystal growth, ire=1 for

an electric furnace at 145C. Glasses were cast in 1-D, n=2 for planar (both denote surface crystalliza-

heated graphite moulds. tion), andn =3 for three-dimensional bulk crystalli-
Glass transition temperatureg,, were determined zation [8—10].

by a horizontal dual pushrod dilatometer (Innovative The effect of glass particle size on crystallization of

Thermal System, Atlanta, GA). The measurement washe A-W glass was studied using glass with particle

made at a heating rate of 3 K mih using sapphire as sizes shown in Table Il. The measurements were made

a reference. Th&,'s were evaluated using the tangentat a heating rate of 5Kmirt in a flowing nitrogen

intersection method. atmosphere to a maximum temperature of 1°XD0
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TABLE | Batch composition A
O 0,
MgO ~ caO  Si@  POs  Cak & Tr1a =80 \
Wt % 46 44.7 34.0 16.2 05 I
Mol % 7.1 49.9 35.5 7.1 0.4 B
2 L
o L
TABLE Il Glass particle size 5 -
Range of particle size a C
(mesh) (mm ogem) I \ \
g1 =863 ° T, = 974°C
~10+16 1-2 mm 2L To=863°C oo™
—20+35 425-85Qum [ P N B BN TN
—35+45 325-425um 700 800 900 1000 1100
—60+80 180-25Qum
—80+120 120-18Q:m TEMPERATURE (°C)
—120+170 90-12Qum
—325 <45pum Figure 2 DTA trace of the glass with particle size of 1-2 mm measured

at the heating ratef®& K min~1.

3. Results and discussion

The glass transition temperatufig, determined by the
tangent method from the dilatomatric curve in Fig. 1 is
~740°C. A typical DTA trace measured at the heating
rate of 5 K mirrt in Fig. 2 shows two exothermic peaks.
The first occurs at2880°C, corresponding to crystal-
lization of apatite, and the second occurs:d008°C,
corresponding to crystallization of wollastonite, as
analysed by the X-ray diffraction (XRD). These results
agree with those reported by Kokubbal. [4].

Fig. 3 shows the DTA traces of the coarse glass par-
ticles measured at heating rates of 5, 7 10, and 1t
Kmin~!. Variations of crystallization peak tempera- T T
ture, Tp, and crystallization on-set temperatufg, as 750 800 850 900 950 1000 1050 1100
a function of heating rate), are observed for the first
exotherms. For the second exotherms, ofdywaries
as a function of heating rate. The onset temperature afigure 3 DTA traces of the glass with particle size of 1-2 mm measured
the second exotherms is constamt-874°C, except at  atthe heating rate of 5, 7, 10, and 15 K mtn
the heating rate of 15 K mirt whereT, is ~986°C.

To andTp are listed in Table IlI.

Fig. 4 shows the corresponding Kissinger plot from

which the slopes,E/R, are calculated by least squares

A
]
>
&3]

DELTA T (K)

<ENDO

TEMPERATURE (°C)

fitting of the data to a straight line. The calculateéd
represents the activation energy for combined crystal
nucleation and growth because no prior nucleation heat
treatment was made in this study. The activation en-
] ergy for crystallization of the first exotherm (i.e. of ap-
atite phase) is*514 kJ mot?, and that of the second
exotherm, i.e. of wollastonite phaseai§74 kJ mot ™.

The Avrami parametem, calculated from Equa-
tion 2 is close to 3 for apatite crystallization, an@
for wollastonite crystallization. Tha value indicates
that the crystallization mechanism of apatite is bulk

0.6 |-

JAL/L

TABLE |l DTA onsettemperature and peak temperature as a func-

0.4 I ; .
tion of heating rate

First exotherm Second exotherm

Heating rate
(Kmin~?) To(°C) Te (°C)? To(°C) Te (°CY?

AN TS FETEE FE T R TS TR P 5 863 880 974 1008

7 870 888 974 1018
0 100 200 300 400 500 600 700 800 10 874 896 974 1023

TEMPERATURE (°C) 15 877 903 986 1047

Figure 1 Dilatometric plots of the A-W glass. (- - -) As-quenched glass, 2deviation of peak temperature #2°C and+4°C for the first and
(—) annealed at 750C for 1 h. second exotherm, respectively.
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Figure 4 Kissinger analysis of glass with particle size 1-2 mmg—)

- Figure 6 The first and second exothermic peak temperature of the glass
first exotherm, (-=—) second exotherm.

with particle size 1-2 mm and 180-2ffn as a function of heating rate.

EXO >

Fig. 3). Tp of the coarse and fine particles measured at
the heating rate of 15 K mirt are different by~4 K,

but considering the experimental errors this difference
appears negligible.

In the case of the second exotherm, a differendéin
for the coarse and fine patrticles is observed. However,
the trend of the peak shift as a function of heating rate is
similar. Variations iriTp of the first and second exotherm
as a function of heating rate of the coarse and fine glass-
particle are compared in Fig. 6.

The activation energies for crystallizatiof, of the
fine particles obtained from the Kissinger plotin Fig. 7
is ~2482 kJ mot! and~:346 kJ mot* for the first and
the second exotherm, respectively. By taking the devi-
ation of the peak temperature into consideration (see
Figure 5 DTA traces of glass with particle size of 180-25mmeasured ~ the note below Table ), the activation energies of
at the heating rate of 5, 7, 10, and 15 K min the coarse and fine particles are 5187 and 482t

36 kJ mot? for the first exotherm, and 372434 and
346+ 30 kJ mot? for the second exotherm, respec-
crystallization, while that of wollastonite is surface tively. A statistical analysis using the studerdistri-
crystallization (planar growth), in agreement with re- bution [12] confirms that the difference in the activation
sults reported by lllesova [11] for a similar bioglass energy between the coarse and the fine particles for the
system. Parameters used for the calculation and the re-
sultingn values are shown in Table IV.

DELTA T (K)

<ENDO

PR T T T T A ST A S S T NS S SN S A S B

750 800 850 900 950 1000 1050
TEMPERATURE (°C)

Activation energy for crystallization of the fine glass 114 ¢
particles is evaluated from the DTA traces in Fig. 5. The
Tp of the first exotherm measured at heating rates of 5, ''° [ D\
7, and 10 K mirt! is identical to those of the coarse i [ \
particles measured at corresponding heating rates (se " [
¥
°;n. -12 O
TABLE IV DTA peak temperature, FWHM, and kinetic parameters % 123 _ \
of glass with particle size 1-2 mm - ' D\
First exotherm Second exotherm -12.4 -
E = 514 kJ mot ! E = 374 kJ mot ; X
-12.6 a
Heating rate FWHM FWHM [
min— p n [ n " Gopil i v aasaia e mrued i)l i iy biaai st i
(Kmin™)  Tp(°C) (K) w(C) (K 12.8
0.79 0.8 081 082 083 0.84 085 086 0.87
5 880 19 283 1008 45 2.03 4
7 888 20 272 1018 49 1.89 10007T, (K-
10 896 19 291 1023 54 173 o _ _ o
15 903 20 280 1047 54 1.79 Figure 7 Kissinger analysis of glass with particle size 180-260.

(—o—) first exotherm, (-=—) second exotherm.
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4. Conclusion
The crystallization kinetic parameters of the A-W
glass obtained from the DTA indicate that the crys-
tallization mechanism of the apatite phase was a three-
dimensional bulk process with the reaction ordes, 3,
while that of the wollastonite phase is a surface process
(two-dimensional planar growth) with~ 2, for a bulk
glass.

The activation energies for crystallization of the ap-
atite phase for the coarse and fine particles aret534
and 482+ 36 kJ mot?, while that of wollastonite are

EXO >

[ 90-120 um

[ 120- 180 um

DELTAT (K)

[ 180-250 um

[ 325-425um

[ 425-850 um 3744+ 34 and 346 30 kJ mot?, respectively. There is
21 2mm no statistically significant effect of particle size @&n
aF for either phase. The independence of the activation
Vo b e b energy on particle size from the DTA confirms the site-
650 700 750 800 850 900 950 1000 1050 saturation condition (i.e. no nucleation rate involved
TEMPERATURE (°C) during the measurements) and the activation energy is

due to the crystal growth. Through these conditions, the
Figure 8 DTA traces of glass with particle size ranging from 1-2 mm gverall crystallization reaction is assumed to exhibit an
(0 <45um measured at the heating rafesd min™". Arrhenian temperature dependence. These results, in

turn, validate the approach used to determine the ki-

first exotherm is not significant within the 95% confi- Netics parameters by the non-isothermal method in this

dence interval. A similar analytical result is obtained study.

for the second exotherm. The crystallization temperature of the wollastonite
The independence @& on particle size of both exo- Phase is strongly affected by the glass particle size. The

therms, within the experimental errors, indicatesP€ak position shifts to a lower temperature as the parti-

that nuclei concentration is saturated and no nucle€le Size becomes smaller. Onthe other hand, the crystal-

ation rate is involved during the DTA measurements lization temperature of the apatite phase is independent

This so-called site-saturation condition infers that theof the particle size. Overlap of the two exotherms is ob-

nucleation rate is negligible and that the evaluated acServed when the particle size is smaller than 420

tivation energy is due to crystal growth [13]. As men-

tioned by Yinnon and Uhimann [13], the crystal growth

rate measured over a limited temperature range assumBéferences

Arrhenian temperature dependence. Therefore, the ast T:  NAKMURA, T.. YAMAMURO, S. HIGASHI,

. . . . KOKUBO ands. 1TO, J. Biomed. Mater. Re49 (1985) 685.
sumption that the overall reaction is an Arrheniantem-, 0« UBO s. ITO M. SHIGEMATSU. S. SAKKA and

T.

—
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decrease in particle size.
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